Too Much Project, Too Little Time
By William R. Bliss

Copyright 2003
Summary:

Frequently the first assignment for a new manager is to quickly handle the crisis that led to the position being created. Despite their difference in scale, these two real-life cases are very similar: urgent software testing projects seemed too large for the time available The solutions lay in careful scheduling, practical risk analysis, and motivation.
Case one: The new team leader faces a two week deadline.
A newly-hired QA team leader was handed an emergency project on his first day with his new team. A serious flaw had been found in the newly-finished software product version, just before manufacturing had started duplication. The repair was made, but now the entire product would have to be completely retested to verify that nothing else was broken in the process. The department manager was already scheduled to go on vacation so the new leader’s introduction to his team was to organize a complete retest from scratch with no prior experience with the product or the staff. The task seemed overwhelming and the crew was understandably anxious.

In a team meeting, the leader learned that there were no formalized test scripts, only check lists. The team members tested based on their experience with the product. The product existed in four versions of increasing complexity, generated from the same code base, each adding features to the previous version. Each of the four versions had to be proven on three different operating system versions, indicating twelve sets of tests.
Size up the job – create a plan – track it – keep everyone informed.
The two-week deadline required fast action. Time estimates were made using the crew's best guess. A little math showed that there was time to do about half the projected number of tests. So the second step was to make a judgment about levels of acceptable risk vs. full coverage. Of course the area that was just repaired would receive full testing. Some other areas of concern were also identified as deserving full testing. Of the remainder, the following logic applied. These areas had already tested clear in the previous builds, so there was a high probability that they would continue to do so. A uniform pattern of spot checks would give high confidence that nothing had been broken in the rebuild. Using a grid of tests vs. operating systems, roughly every third combination was checked as one to test. Since all the versions were built from the same code base, there was a reasonable presumption that a pass in the simple version would imply a pass in the complex version, and vice versa. An even distribution was followed so that we could be assured that each test would be performed at least once in each version, and each test was run at least once in each operating system – hitting four out of twelve possible combinations. We agreed that this pattern had an acceptable level of risk. Tasks were assigned to those who could perform them most efficiently, with the new manager taking on as much testing as could be done without prior training. A list of test assignments and their current status was posted daily on the manager's door.

The staff was told that it was possible to accomplish the goals inside normal business hours, but it would take a focused and concentrated effort. No weekend work was the carrot. Daily progress was displayed on thermometer charts on the bulletin board so that the project took on the excitement of a race as the deadline closed in. People could see where the project stood, and if it was on track. At the end, those who finished early immediately pitched in on working down other’s lists so that all finished at the same time and the projected tasks were completed a day early with great celebration. This team success was a great morale boost, achieved through teamwork and with everyone contributing.

But it didn’t end there. Even though the rational subset had been tested and the product delivered to manufacturing a day early, there were two remaining cleanup tasks that were part of the initial plan. First, testing continued on the untested scenarios, even after delivery, as a final sanity check, based on the theory that it was better to discover a recall before you actually start shipping it than it was to find out after it was in stores. Fortunately, the rational subset had been sufficient and no additional issues were discovered. Secondly work began immediately to create full written test scripts for all product features so that in the future, testing could be fully planned, orderly, accountable and could be run by any technically competent person even if they were unfamiliar with the product.

Case two – bigger and badder.
The time period was bigger, the distracting personnel issues were bigger, the complexity of the test requirements was bigger and the uncertainty was bigger. Upper management feared that the project would fail to meet deadline and was ready to require extraordinary hours and weekend work.
Several months earlier the company had been acquired and the rumor had spread that the local office would be closed. The new ownership had failed to communicate their plans, leaving speculation to fill in the blanks. It had been an opportune moment for many to jump ship as salaries were skyrocketing in the market. Thus an extremely well-organized and automated test operation was fragmented. Most of the test automation skills and all of the quality assurance management were lost. Customer unease had led to a top management decision to guarantee a delivery date for the upgrade that was in progress without first doing a feasibility study. When the new manager stepped in, the hard date was two months away. Testing was progressing manually under the guidance of the senior test engineer who did not relish the manager role. It was not clear that the goal was achievable. Status was uncertain and morale was significantly at an ebb with an undercurrent of frayed nerves and personnel conflicts.
The suite of needed of tests was well documented; there was even an already-accepted level of risk analysis defining where to test fully and where to test lightly. What was unknown was how long it would take to run through all the tests manually with a fragmented crew, and where they stood today versus the hard deadline.
Create a straw man plan, track it and refine it.

In discussions with the senior test engineer a best guess time estimate was made for each test knowing full well that these were only guesses. Also, code development and bug fixes were still in process. Their completion dates were only guesses as well. A detailed chart was created of the known available person days which accounted for known off-site commitments and any other planned absences. From these sets of information, a prioritized test schedule was developed with the most worrisome areas being tested first.

As with the first case, upper management had expected that late hours and full working weekends would be required to complete the task, but the new manager felt it wiser to avoid that option, leaving it only as a last resort. As before, it became a significant focusing motivator. The crew had expected an exhausting grind with no time off; the hope of free weekends was worth working for.

The new manager made it a point to have an immediate group meeting to meet the crew and then have personal follow-up meetings casually with each individual in the first few days; to establish open communication, unearth any issues, and to make clear what the plan was going to be. Daily communication and obtaining input from the staff was an important part of the plan.
Assignments were distributed with an eye to expertise and experience. The senior engineer was given the areas that required the most knowledge, and would act as mentor to the more junior engineers when they ran into issues. The new manager took on as much of the testing as possible that did not take a depth of experience. People were generally given exclusive ownership of certain groups of tasks. Tasks in areas where no one had experience were given to the new staff, since they would have a learning curve in any case.

This initial planning and organizing was performed in less than a week. With a plan of sorts in place, the remaining consideration was whether or not there was time to perform all the tasks.

A rather complex spread-sheet was created to track progress and placed on the server where everyone could update it as they completed tasks. As a safety, the manager maintained the official copy off-line in case anything were to corrupt the on-line form. All scheduled tasks were listed along with the guesstimate of time to perform and both former and current owner. Formulas were created to generate statistics for each week. For example, in week one for a given task, the test owner reported the percentage done. Formulas translated this to how many hours had been achieved and how many remained to be done. Summaries were collected at the top. Other formulas tracked available hours vs. projected hours required pace needed to make the deadline, and these numbers were compared to actual. No matter how inaccurate the time estimates were, as tasks were completed, the actual pace could be measured. An additional column had spaces to show the current status by color code with blue indicating a task not started, green indicating a task under way without problems or completed, yellow indicating a concern such as a reported bug that needed fixing, and red indicating an urgent emergency problem that could interrupt the schedule. A final set of formulae totaled each color status at the top of the week’s columns. Then identical sets of columns were created for each subsequent week until deadline.
In two weeks there was an indication that the current pace would not finish the job on time, and the third week’s data reinforced this projection.
Armed with this knowledge, several subsequent actions were able to increase productivity and by the seventh week the trend had been reversed with the pace catching up to the projection.

· First, as people become more focused on the defined path, work became more efficient in general so tasks were completed more quickly with less time on uncertainty. People started having enthusiasm for their work and a drive to beat the clock.

· Secondly, people encountering hurdles learned to use the senior engineer efficiently to quickly solve problems and get on with the task.

· Some additional help was found from the development crew who were winding down their work as the quality assurance team was ramping up. Available person hours went up by ten percent. A clear statistical view of the project status was instrumental in obtaining inter-department assistance.
· Some additional re-assignments of tasks were made to get around personnel conflicts. One tester who’s productivity was questionable was taken from a team situation and given a solo assignment in a non-critical area so his work would stand on its own and not be obscured by others. He remained a problem but ceased being a negative influence on the team and his personal productivity did improve.

· Posting progress-against-goal thermometers on a daily basis gave everyone the focus of the importance of meeting the deadline and clear knowledge of how well they were doing. The team gained a common purpose and became motivated to work as a team with energy as they saw problems being solved and that their input was valued and mattered. The undefined mountain of work had become a clearly defined set of tasks.
· A team goal from the beginning was to avoid having to work weekends and long into the night. As the crew saw that this was an achievable goal if they were effective on a daily basis, and they could clearly see the results of their effort making it happen, people took the initiative to solve problems and to work more efficiently and intensely – there was a clear emotional and practical reward for hard work.

The end result was that, despite several unexpected bumps in the road and frustrations, the goal was met ahead of time by three days without the need for mandatory overtime or lost weekends. One voluntary Saturday work party, with free pizza and Chinese take-out, was scheduled due to a major unexpected blowup. Because it was an exception and voluntary, it took on more of a party aspect than cruel drudgery and those who didn’t make it kind of wished they had.
By having a straw man model to start with and a means to tally actual progress against the model, the model could be adjusted during the process and additional measures could be taken to bring the project in on time.
As with the first case, the team members developed a team spirit and an enthusiasm to win the race, helping others and coming up with creative solutions on their own. What had been a cantankerous collection of personalities at start became a far more unified and cooperative unit by the completion date.

Conclusion:

Getting a over-sized project under control includes these elements:

1. Define all the tasks and get a best estimate of time needed to do them
2. Perform the hard and rational risk analysis about how much can be done in the time frame, then find the intelligent subset of tasks that will give the best results.
3. Have everyone involved in defining goals and give them ownership to achieve it.
4. Monitor progress daily and post it graphically.

5. Avoid abusive work hours.
6. Keep in daily touch with each person and acknowledge their contribution as they go. Praise publicly but correct privately.

7. Put out fires right away and be flexible.
8. Constantly look for new ways to improve productivity and to make people successful.
9. Acknowledge successes as they happen.
10. Maintain constant information flow to the team so that everyone knows what is going on and knows the current status of the project.

About the Author:
William Bliss is a management consultant, specializing in process management and quality systems. His clients have included Lotus Development Corporation, Digital, and Dragon Systems. You can send him email at bill@blissfunding.com or visit his Web site at http://www.blisscenter.com.

